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T H E  S H O C K - W A V E  S T R U C T U R E  IN A T W O - V E L O C I T Y  

M I X T U R E  OF C O M P R E S S I B L E  M E D I A  W I T H  D I F F E R E N T  P R E S S U R E S  

A .  A .  Z h i l i n  a n d  A .  V .  F e d o r o v  UDC 532.529 

The problem of the shock-wave structure in a mixture of two compressible media with different 
velocities and pressures of  components is considered. The problem is reduced to solving 
a boundary-value problem for two ordinary differential equations that describe the velocity 
relaxation and pressure equalization of the components. Using methods of  the qualitative theory 
of dynamic systems on a plane, the existence and uniqueness of four  types of  waves are 
shown: (a) fully dispersed waves; (b) frozen-dispersed waves; (c) dispersed-frozen waves; (d) 
frozen waves of  two-front configuration. A chart of solutions of the corresponding flow types 
is constructed in the plane of the following parameters: the initial velocity of  the mixture 
and the initial volume concentration of one of the components. The numerical calculations 
conducted illustrate the obtained analytical structures of the shock wave. It is shown that the 
results obtained using the suggested mathematical model are in agreement with experimental 
data on the dependence of the velocity of the dispersed shock wave on the equilibrium pressure 
behind the shock-wave front for a mixture of silica sand and water. 

In [1-3], the structure of a shock wave (SW) in a mixture of two solids is described in the hydrodynamic 
approximation of one- and two-velocity flow with different pressures of the components and two-velocity flow 
with equal pressures of the components. In [4], the stability of propagation of various SW types found in [1-3] 
is shown numerically and the problem of SW reflection from a rigid wall is solved. The SW structure in a 
one-velocity and one.temperature flow of a mixture with different pressures is studied in [5]. 

In the present paper, we consider the problem of description of an SW in a mixture of two compressible 
media in the case of variable (in contrast to [2]) concentrations of the components and their different velocities 
and pressures. 

1. G o v e r n i n g  E q u a t i o n s  and  Formula t ion  of  t he  P r o b l e m .  The equations that describe the flow 
of a mixture of two compressible media with different pressures and velocities of the phases have the following 
form in a coordinate system propagating together with the SW: 

Uff ,~+p~O~=O, U2~2+p2r)2=O, C ~ 0 , + C 2 0 2 + P = 0 ,  
(1.I) 

C 2 ( ] 2 + m 2 P 2 + ( P 2 - P : ) r h 2 + F s = O ,  rh2 = R. 

Here and below, mi is the volume concentration of the ith phase (mi + m2 = I), P = P l m l  + P2m2 is the 
pressure in the mixture, P i =  a~(pii - pii,o) is the pressure of the ith phase, p = pl + p2 is the density of 
the mixture, p i =  piimi is the mean density of the ith phase, pii is the true density of the ith phase, pii,o is 
the true initial density of the ith phase, ~i = pi/p, Co = poUo = C: + C2, Ci = pioUo, C3 = (C1 + C2)Uo, 
C = 1 - a2~, a = a2 /a l ,  ~ = p22,0/p11,0, Ui is the relative velocity of the ith phase, ai is the speed of sound in 
the ith phase, R = m:m2(P2 - P1)/(p2U2) is the function that describes the process of pressure equalization 
in the phases [6], Fs = mlp2(U2 - .  U1)/7"s is the Stokes force that takes into account the interaction between 
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the phases due to viscosity, rs = 2p22r2/(9#l)  is the time of Stokes relaxation of velocities, r is the radius of 
a solid particle, #i is the dynamic viscosity of the ith phase, and rm 2 = 2#2/(a2p11,o). 

Since the mixture is in a state of dynamic and thermodynamic equilibrium upstream of the shock-wave 
front and far downstream of it, we should impose for (1.1) the conditions of steadiness at +oo for the vector 
of the solution ~I'(pl, p2, U1, U2, P, m2): 

'~ "* ~0, ~fi,, ~ -~ 0 for ~ ~ +co.  (1.2) 

Thus, the physical problem of propagation of a steady shock wave in a mixture of two materials reduces 
to the solution of the boundary-value problem (1.1) and (1.2). 

System (1.1) reduces to the usual Cauchy problem for two ordinary differential equations: 

dU1 U1 Fs - P l R / m l  dU2 U2 Fs + R[P2 - P 1 - a 2 p 2 / r n 2 ]  (1.3) 
de = p'--[ U 2 - 1  ' de - P2 U 2 - a 2 

The function ml is found from the law of conservation of momentum for the mixture 

CIU1 + C2U2 + P(pl,p2, ml) = Cs 

and equations Pi = Ci/Ui  in the form 

CIU2(U? + 1) + C2UI(U 2 + a 2) -- UIU2(C3 + a2p) 
rnl = CU1 U2 

2. Poss ib le  T y p e s  o f  F l o w  of  t h e  M i x t u r e .  We determine the characteristic flow parameters of the 
phases that  arise when the times of relaxation of the velocities and concentrations of the components change. 

(1) Frozen flow occurs when vs, rm2 ~ co (U1 # U2 and / '1  # P2). In this case, the speed of sound 
in the itb component ai is known, we find the velocity behind the frozen shock wave (Ji = a2/Uo, and the 
velocities and pressures of the components are always different. 

(2) Equilibrium flow occurs when TS, rm 2 --* 0 (.(]1 = [72 and /'1 = P2). It is characterized by the 
equilibrium speed of sound 

C2 = m,C - 
, n ,  m 2 C  - 

and the velocities and pressures are equal. Here the velocities of the components in the final equilibrium state 
[1] behind the SW front can be determined analytically: 

2 0+03 ~(C C3)2 + 4(C3 2 2 . . . .  c c i) 
Ufin = 26o 

(3) Equilibrium-frozen flow occurs when ~'s --~ 0 and ~m 2 # 0, OO (UI = U2 and P1 # P2). The 
equilibrium-frozen speed of sound C2f = ~1 + a2~2 is obtained for this flow. The state behind the front of 

the equilibrium-frozen SW is defined as (] = C2I/Uo. The velocities of the components are equal, and the 
pressures are different. 

(4) Frozen-equilibrium flow, for which rs # 0, oo and rm2 "-* 0 (UI # U2 and/91 = P2), is characterized 
by the frozen-equilibrium speed of sound 

C ~ , = l  + a 2 ( ~ - ~ )  2. 

The velocities of the components are different, and the pressures are equal. 
It what follows, ordering of intermediate speeds of sound will be required. Our consideration showed 

that the following is valid. 
S t a t e m e n t  1. I f  rot0 6 ((}, m,], the chain of  inequalities 1 <~ Ce < CeI < a < CI ,  is valid; if 

ml0 6 (m, ,  1), then Ce < 1 < CeI < a < CIe, where 

f i (a  2 --  1) 
m , - -  C ( 1 - ~ ) "  
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3. Ana lys i s  of  t h e  T y p e  of  S t e a d y  Poin t s  of  S y s t e m  (1.3). Class i f ica t ion  of  Shock-Wave  
Types .  Estimates of the Coefficients of the Secular Equation of the Jacobi Matriz. To study the correctness 
of the formulation of problem (1.1), (1.2), we study the type of steady points of system (1.3). For this, we 
determine the eigenvalues of the Jacobi matrix of this system that satisfy the equation 

A 2 - - a A T A = 0 .  

Here 

(3.1) 

U s - C~2I Urn, fIUmlm2 U 2 - C}e 
~= -I- �9 

U 2 - 1 ~lrs(U s - a 2) ]z2(U s - a 2) U 2 - 1 ' 

~lrn~m2 U 2 - C 2 f ~  [P~121P2a s ] 
A =  ~:'s/~s(U 2 - a  2) U 2 - 1  ; = -  +--~-22j; U , = U 2 = U ;  P, = P 2 = P .  

We study the behavior of A as a function of (U, ml0). The sign of A is determined by the function 
(U s - C2)/[(U 2 - 1)(U s - a2)]. Thus, the qualitative behavior of A(U) for various values of mlo can be easily 
obtained from this formula. If ml0 E (0, m.) ,  then A(U) is negative on the interval U E (0, 1) U (Ce, a), and if 
U s (1, Ce) U (a, +oo),  it is positive. For U = Ce, A vanishes and has second-order discontinuities for U = 1, a. 
If ml0 = m. ,  there is only one discontinuity a, and the behavior of A(U) in the vicinity of this point is similar 
to the case described above. The function A(U) is negative for U E (0, a) and positive for U E (a, +oo). If 
ml0 s (m. ,  1), then A(U) is negative for U s (0, Ce) U (1, a) and positive for U E (Ce, 1) U (a, +oo). When 
U = Ce, A vanishes. When U = 1,a, A has a second-order discontinuity. Finally, in all three cases, A(U) 
approa~:hes zero asymptotically as U ~ +oo. We see that  the sign of A is not determined by U. 

If A < 0, the discriminant 7) = u2 _ 4A is positive, and the values A1,2 are real. If A > 0, an additional 
analysis is required. For this, we consider the discriminant TI of Eq. (3.1), which determines the eigenvalues 
as a function of the ratio of the relaxation times X = rs/rm2. Then, we have 

1 D[Ax  2 + B X + C ] ,  ~) = uS -- 4A = ~'~ 

where 

A = 4min (: - C} , )  > 0; 

4Ilm2 2 B= :)- (:- r 

C = (U2 - c~2/)s > 0; D = USm2 > O. 
~2 (g 2 _ 1)2(U2 _ a2)2 

We seek the values of X• = (-B :l: ~/B 2 - 4AC)/2U that determine the regions of definite sign of the 
function ~)(X)- After some transformations for 7)1(U) = B 2 - 4AC, we can write 

Here 

~D, = F ( F -  1). 

(U 2 - 1)(U 2 - a2)(U 2 - C 2) 

F(:)= 9 
Elementary estimates allow us to obtain 

< I  for 

.~< 0 for 

F =  t>0 for 

~<0 for 

> 1  for 

U e ( 1 , C , ) ,  
U ~ [C,, a), 
U ~ (C~:, ~), 
U e [~, Cl,], 
U e (CI , ,~] -  

F(1) = F ( C e )  = O, 

Re [0,~), 
f e [-oo,0), 
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Fig. 1 

We note that  for m]0 fi (m. ,  1) the points 1 and Ce will change places in the pattern of the behavior 
of F described above. When ml0 = m. ,  the points 1 and Ce will merge. At the site of merging, the function 
F will have a maximum value on the interval (0, Ces), which is equal to zero. As a result of this analysis we 
obtain 

S t a t e m e n t  2. If  m]o E (0, m,) ,  we obtain the following estimates for A and F: 
(1) U E ( 1 , C e ) = l l ,  A > 0 ,  a n d O < f < l ;  
(2) V E ( Ce , Ce f ) = 12, A < O, and F < 0; 
(3) V E (C, f ,a )  = I3, A < O, and F > 0 IV E (C, f ,C'] ,  F >1 1 U E (C',a),  and F < 1]; 
(4) U E ( a ,  C f e ) = I 4 ,  A > 0 ,  a n d f < 0 ;  
(5) U E (C/e, oo) = Is, A > O, and F > 1. 
If  ml0 = m, ,  the estimates for A and F are similar to those described above when ml0 E (0, m.) ,  

except for the region I1 because Oe = 1. 
/ f  m]0 e (m. ,  1), then for A and F we obtain estimates over regions that are similar to (1)-(5), in 

which the first two intervals are replaced by ( Ce, 1) and ( i, Gel). 
The eigenvalues and types of  steady points of  system (3.1). 
(A) We consider the  steady points in the initial state. We study the eigenva]ues ~1,2 of Eq. (3.1) using 

the previous statements for the corresponding regions (Fig. 1). 
1. The region 11 consists of the subregions I l l  for rnl0 E (0 ,m, )  and I]2 for ml0 E (m. ,  1). For I], we 

have A > 0 and F E (0, 1). Therefore, ~D1 < 0, and there are no roots X• of the equation :D(x ) = 0. Hence, 
:D(x) > 0, and the singular point is a node. 

2. In the region/2,  we have A < 0 and F < 0. Hence, ~D1 > 0 and there are real roots of the equation 

x +  = - 

The expression in braces is positive, and the sign of X• is determined by the sign of the relation (U 2 - 1)(U 2 - 
C2)(U 2 - a2), which is negative everywhere in (Ce, a). Thus, X+ < 0 in /2 .  Therefore, the inequality is valid, 
and we have a saddle point in this region. 

3. The region/3  is divided into two subregions:/~, where V E (Cey, C'], and I~ ~, where U E (C', a). 
There axe real roots X• < 0 in the region I~. Hence, we obtain a saddle point. In the region I~ I, we have 
0 < F < 1; therefore, X+ are complex-conjugated, 'D(x ) > 0, A < 0, and we obtain a saddle point. 

4. In the region/4,  we have F < 0; hence, there are positive values of X+. Thus, for X E (0, x - ) U ( x + ,  co) 
the discriminant ~D is positive. Furthermore, since A > 0, the singular point is a node. For X E (X- ,X+),  we 
have 23 < 0 and A > 0, and the singular point is a focus. 

5. In the region /5, we have F > 1, and there are X• > 0. Then the consideration reduces to the 
previous case with the only difference that  a node is in the range X 6 (0, X+) U (X-, co), and a focus is on the 
interval X E (X+, X-)- 

The results lead to 
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S t a t e m e n t  3. For Uo E 11, the singular point is a node; for Uo E (12,13), the singular point is a 
saddle; for Uo E 14, the singular point is a node if x E (O,x-) U (X+,Cx~) and a focus if x E (X-,X+); for 
Uo ~ Is the singular point is a node if  x e (0,X+) U (X-,~) and a focus if x e (X+,X-)- 

(B) We consider the steady points in the final state. By virtue of Cemplen's theory, Utin < C~,~n, and 
three variants are possible: 

1.0 < Ulin < 1 < Ce,tin; then A < 0 and the final point is a saddle. 
2. 1 < U~n < Ce,~n; then A > 0, F E (0, 1), and ~D1 < 0. This means that  there are no roots X• in the 

region of real numbers. Therefore, 33 > 0 and the final point is a node. 
3. Uji, < Ce,lin < 1; then,  A < 0, ~(X) > 0, and the final point is a saddle. 
Thus, the following s ta tement  is valid. 
S t a t e m e n t  4. For Utin E (0,1), the singular point is a saddle; for Ufi. E (1, Ce~n), the singular point 

is a node; for Utin E (Ge,tin, 1), the singular point is a saddle. 
Summarizing the above considerations of the SW types (Fig. 1), we can formulate 
P r o p o s i t i o n .  If  the boundary conditions for problem (1.2) and (1.3) at an infinitely distant point are 

such that: 
(1) U0 E (121,I31), then a solution (UI(~),U2(~)) exists in the class of continuously differentiable 

functions;, 
(2) Uo E (I22, Is2), then a solution e.z~ts in the class of continuous functions for the second phase and 

in the class of discontinuous functions for the first component; 
(3) U0 E (141,IsI), then a solution exists in the class of continuous functions for the light component 

and in the class of discontinuous functions for the heavy component; 
(4) U0 E (/42, I52), then a solution exists in the class of discontinuous functions. 
R e m a r k  1. Physically, flow (1) corresponds to fully dispersed shock waves in both phases, flow (2) to 

a dispersed SW in the heavy phase and a frozen SW in the light phase, flow (3) to a dispersed SW in the first 
component and a frozen SW in the second phase, and flow (4) corresponds to frozen SWs for both components 
of the mixture. The  position of the frozen SW in the first phase is a free parameter of the problem. 

R e m a r k  2. In defining the region Ikj we do not include the vicinity of the line Ufin = 1, for which 
there is reason to believe tha t  the solution in this region is transonic with internal singular points. 

4. Discussion of  R e s u l t s  o f  N u m e r i c a l  Calculations. We studied numerically the flow pattern 
of a mixture of water ( the first phase) and silica sand (the second phase) in shock waves of various types. 
Figure 2 shows the velocity of the dispersed SW for ml0 = 0.4 as a function of the equilibrium pressure behind 
the SW front ( the solid line refers to the calculated results, and the vertical lines are the span of experimental 
data [7]). It can be seen tha t  for rooderate pressures in the mixture, the linear partial equations of state of 
the components allow one to describe the experimental data. 

1. Let Uo E (Ce,o,a) and ml0 ~< m* (m* is the value of ml0 for which Ufin = 1). In this region of 
initial parameters,  the SW is fully dispersed in both phases. As the volume concentration of water increases, 
we observe the distributions of parameters shown in Fig. 3, in which the flow in the SW is quasiequilibrium 
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in velocities. The SW width decreases as the liquid fraction increases, a more dramatic deceleration occurs, 
and, as a consequence, the increase in pressure is larger. In contrast to the velocity equilibrium, the phase 
pressures demonstrate nonequilibrium behavior. The difference in pressures is maximum at the SW center, 
and in the solid phase the  pressure is larger than in the liquid phase. 

A further increase in ml0 changes the type of observed SW. The wave becomes a frozen-dispersed SW. 
We understand the frozen-dispersed SW as a flow that is adjacent asymptotically to the initial and final states 
at -boo and has a weak discontinuity in the second phase and a strong one in the first phase. 

The mechanism of emergence of a frozen-dispersed SW is as follows. As mz0 increases to m*, the final 
velocity of the shock wave approaches the speed of sound in the first phase. For mz0 = rn*, we have Utin = 1. 
This motion of the mixture is marginal, and the singularity on the right-hand side of the first equation of 
(1.3) is evaluated. However, for ral0 > ra*, we have Utia < 1, and for attainment of an equilibrium state 
behind the SW front, transition through the speed of sound in the first phase is required. This is responsible 
for the appearance of a strong internal discontinuity in the liquid. [n this case, the second phase has a weak 
discontinuity at this point of space. It can be seen (Fig. 4a and b) that as the liquid fraction of the mixture 
increases, the internal SW moves upstream and its intensity increases. The region of continuous flow ahead 
of the front of the internal SW decreases as ra]0 grows. It should be noted that continuous loading of the 
liquid occurs in the first phase. At the same time, loading is observed in the sand in the fore part of the 
frozen-dispersed SW (in the region located upstream of the internal SW), and unloading is observed in the 
rear part of the shock wave. The ratio of the maximum pressure of the second phase to the pressure of the 
liquid behind the front of the internal SW remains roughly equal to three when m]0 changes. In addition, the 
pressure behind the SW front in the final equilibrium state exhibits nonmonotonous behavior with variation 
in the water content. There is a value of raz0 after which an increase in mz0 leads to a decrease in pressure 
behind the front. This is related to an increase in water content in the mixture. 
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2. We increase the SW velocity to U0 = 2.5, remaining in the interval (Ce,0, a) and m]0 < m*. The 
SW is a dispersed one, but the velocity of the liquid becomes nonmonotonous as ml0 increases, as is shown 
in Fig. 5. In contrast to a SW with a small velocity (U0 = 1.5), a flow in velocity quasiequilibrium is observed 
only for small m]0 (see m]0 = 0.1). The dispersed SW is divided into two regions. At the leading edge of the 
SW we have U1 > U2. At the rear edge of the SW behind the point ~ = ~. [UI(~.) = U2(~.)] we have UI < U2, 
and the flow in this wave exhibits strong nonequilibrium in velocities. The velocity nonequilibrium is seen to 
increase as m]0 increases. The flow with rnl0 -- 0.5 contains a narrow zone in which dramatic deceleration of 
the phases occurs as if the flow undergoes a strong shock, behind which U1 increases to its final value. 

This nonmonotonous flow of the mixture exists until the minimum value of U] becomes equal to the 
speed of sound in the first phase. Since in this case equilibrium in velocities and pressures may not exist, a 
gradient catastrophe is possible, and there is no flow of this kind in a steady-state formulation. 

The pressure in the light phase increases monotonically downstream (Fig. 5). The behavior of the 
pressure profile in the solid component depends on the initial volume concentration of the first phase. Figure 
5 shows the transition from a monotonous pressure profile of the solid particles to a nonmonotonous profile. 
As ml0 increases from 0.1 to 0.3, the pressure profile becomes flatter with approach to the final equilibrium 
state. For ml0 - 0.3, the pressure in the solid particles reaches a certain =ledge" at the final stage. After that, 
a further increase in the initial volume concentration of the first phase gives rise to a pressure maximum in 
the second phase. The pressure maximum in the second phase is related to the increase in density of the solid 
particles due to their large mass. 

As rnl0 increases, the flow of the dispersed SW becomes frozen-dispersed (Fig. 6). In contrast to case 1, 
however, the velocity of the first phase behind the front of the internal SW increases, while the particles are 
still decelerated. The mixture is in a strongly nonequilibrium state up to the internal shock. As the liquid is 
decelerated in the shock, the nonequilibrium of the phases decreases. The qualitative behavior of the pressure 
of the phases is similar to that  described above for U0 = 1.5. 
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3. Let Uo E (a, Cse) and U0 = 3.05 (Fig. 7). In this case, at small rn10 the SW will be called a 
dispersed-frozen shock wave. There is a strong shock in the second component at the SW head [exit from the 
initial equilibrium state of a stable focus (a node) is accomplished by means of this shock]. Then the velocity 
of this component decreases monotonically until an equilibrium state is attained. The velocity of the light 
component changes continuously and demonstrates nonmonotonic behavior. In the flow the absolute value of 
Ul,mi, decreases and approaches unity as ra]0 increases. This type of flow requires special consideration. 

The pressure in the first phase is monotonic, and the pressure in the second phase becomes 
nonmonotonic as rrzl0 increases. 

As rnl0 increases, the flow acquires a two-front configuration (Fig. 8), which is called a frozen SW. Here, 
at the SW head, there is a strong discontinuity in the second phase; the flow in the first phase is continuous. 
In the leading part of the frozen SW located upstream of the internal shock in the liquid, the flow is strongly 
nonequilibrium. The degree of nonequilibrium decreases after deceleration of the liquid in the internal shock. 
The particles are still decelerated, whereas the liquid, to which momentum is transferred from the particles, 
is accelerated until the phase velocities become equal. 

4. Increasing the velocity U0 to values within the interval (Cle, a2), we obtain the following flow 
patterns. For U0 = 3.3, the velocities and pressures behave qualitatively similarly to the case U0 = 3.05. The 
difference lies in the SW intensity, which increases with increase in U0. 

5. Remarks on the calculational technique. The calculation of fully dispersed shock waves reduced to 
determining the trajectory passing from the saddle to the node and involved no difficulties. 

To determine flows with an internal SW (motion of the mixture of the type of a frozen-dispersed 
SW) we used the following calculation algorithm. An exit from the initial and final steady points (saddles) 
was performed analytically along the separatrix in the unstable direction. Having calculated the appropriate 
separatrices, we connected them through the SW conditions in the first phase. The position of the internal 
SW was the parameter to be found. 
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The dispersed-frozen SW was calculated as follows. An exit from the initial state was performed by 
introducing a SW in the second phase and subsequent calculation of the trajectory up to attainment of the 
final equilibrium state (node). 

To determine the flow parameters with frozen shock waves for both components, we used the following 
algorithm: an exit from the initial state was performed by introducing a SW in the second phase; the trajectory 
passing to the final equilibrium state was found by choosing the SW position in the light component using 
the technique described above for the frozen-dispersed SW. 

5. Conclus ions .  The structure of shock waves in the form of dispersed and frozen shock waves with 
one- and two-front configurations is described on the basis of a mathematical model for the flow of a mixture 
of two condensed components with different velocities and pressures. 

It is shown that this model adequately describes the experimental data obtained by G. M. Lyakhov 
for the dependence of the dispersed-SW velocity on the equilibrium pressure behind its front. 

A chart of possible types of motion of the mixture is constructed in a plane with coordinates ml0 and 
U0. The calculated data illustrating these types of flow are presented and analyzed. 
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